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Harmonic expansion is a useful tool to analyze the CSL triple junction distribution in a
randomly oriented polycrystalline aggregate. By using this approach, a general form of the
CSL triple junction distribution could be derived. It makes it possible to calculate—in a very
efficient way—the frequency of occurrence of various CSL triple junctions. The accuracy of
calculation is confirmed by the estimated frequency for the �1-�1-�1 junctions, which
turns out to be in very good agreement with its theoretical value as derived from fully
analytical calculation. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Grain Boundaries and triple junctions—the line along
which three grain boundaries meet - are important mi-
crostructural elements in polycrystalline materials. The
aim of controlling grain boundary (GB) distributions
in polycrystalline materials, submitted originally by
Watanabe in the context of grain boundary design [1],
has drawn significant attention. It has been recently
emphasized that, not only the grain boundary distri-
bution, but also the distribution of triple junctions, has
to be taken into account since junctions contribute to
intergranular degradation resistance [2] and also have
a significant impact on grain boundary migration [3–
6]. Recent experimental and theoretical work has re-
vealed that the various properties of individual grain
junctions, including energy, diffusivity, corrosion, mo-
bility, etc., are strongly structure-dependent [7]. Three
complementary models have been the object of spe-
cial attention for the interpretation of the triple junction
structure: the Coincident Site Lattice (CSL) method
[8], the Coincident Axial Direction (CAD) approach
[9] and the I/U line treatment [10, 11]. This paper is
concerned with the calculation of the triple junction
character distribution of randomly oriented cubic crys-
tals on the basis of the CSL model. In the specific case
of �1-�1-�1 junctions, the corresponding occurrence
frequency has been derived as a close formula by means
of fully analytical calculations. The results obtained are
of importance to analyze CSL triple junctions in real
materials.

2. Methodology
2.1. Description of a CSL triple junction
First, we consider an exact CSL misorientation g� in
matrix representation. Due to symmetry, this misori-
entation corresponds to K� equivalent elements of the

rotation group SO(3). Let C denote the subgroup of
crystal point symmetries containing only proper rota-
tions. K� can be established easily by counting the
number of different elements within the double coset
[12]

{
gk

�

} = {
g ∈ SO(3) | g = cmg�cn or

g = cmg−1
� cn, cm, cn ∈ C

}
. (1)

By convention, a grain boundary is assigned to a certain
� CSL type if its misorientation g is sufficiently close
to at least one of the elements of the {gk

�}. Brandon’s
criterion [13], i.e.

�θ� = 15◦ �−1/2, (2)

has often been used to determine the maximum allow-
able angular deviation �θ� for certain CSL boundaries.
However, Palumbuo and Aust have recently proposed
a more selective criterion [14]

�θ� = 15◦ �−5/6. (3)

Let us now consider a triple junction where grain
boundaries 1, 2, 3 meet (Fig. 1). The misorientation
geometry of the triple junction is governed by the fol-
lowing relationship:

g1g2g3 = I, (4)

where gi (i = 1, 2, 3) are the misorientation matrices of
three co-joining grain boundaries and I is the identity
matrix.

Similarly, the triple junction is classified as a CSL
triple junction when all involved boundaries are low �
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Figure 1 Schematic representation of a triple junction geometry.

CSL types. This can be formally described as

g1 ∈ �a ↔ ∃i | �
(
g1

(
gi

�a

)−1) ≤ �θ�a

g2 ∈ �b ↔ ∃j | �
(
g2

(
gj

�b

)−1) ≤ �θ�b, (5)

g3 ∈ �c ↔ ∃k | �
(
g3

(
gk

�c

)−1) ≤ �θ�c

where �(g) is the angle of the rotation g.

2.2. The series expansion approach
For a randomly oriented polycrystal, the frequency of
occurrence of CSL triple junctions is given by a double
integral

F�a−�b−�c = N�a−�b−�c

∫∫

τ

dg1dg2,

τ :
g1 ∈ �a
g2 ∈ �b
g2g1 ∈ �c

(6)

where N�a−�b−�c is the number of possible geo-
metrical configurations belonging to the same family
�a-�b-�c, i.e. 1 for�a = �b = �c, 3 for�a = �b �=
�c and 6 for �a �= �b �= �c. To perform the above in-
tegration, we introduce the characteristic function I�(g)
of the set of rotations whose angle is smaller than �θ�

defined as

I�(g) =






1 �
(
g
(
gi

�

)−1) ≤ �θ�,

i = 1, 2, . . . , K�.

0 �
(
g
(
gi

�

)−1)
> �θ�

(7)

Such a symmetrised function may be represented in the
form of a series [15]:

I�(g) =
∞∑

l=0

M(l)∑

α=1

M(l)∑

β=1

I αβ

l (�)
::
T

αβ

l (g) (8)

with the series expansion coefficients

I αβ

l (�) = (2l + 1)
∮

I�(g)
::
T

∗αβ

l (g) dg, (9)

where
::
T

αβ

l (g) are generalised spherical harmonics sat-
isfying the crystal symmetries on both sides and the as-
terisk denotes the complex conjugate. We have proven

for the I αβ

l (�) coefficients that

I αβ

l (�) = K�

2π
Wl(�θ�)

[ ::
T

∗αβ

l (g�) + ::
T

∗αβ

l (g−1
� )

]

(10)

with

Wl(�θ�) =





�θ� − sin(�θ�) l = 0

sin(l�θ�)/ l − sin
× [(l + 1)�θ�]/(l + 1) l > 0

.

(11)

The expression (6) can be written as

F�a−�b−�c = N�a−�b−�c

∫∫
© I�a(g1)I�b

× (g2)I ∗
�c(g2g1) dg1dg2. (12)

If we rewrite I�(g) as defined in (8) into (12) and take
into account the orthonormality relation of the gener-
alized spherical harmonics, we obtain

F�a−�b−�c = N�a−�b−�c

∞∑

l=0

1

(2l + 1)2

×
M(l)∑

α,β,γ=1

I αβ

l (�a)I γα

l (�b)Iβγ

l (�c).

(13)

Moreover, we restrict ourselves to those CSL junctions
with � ≤ 29.

Under that condition, the following formula holds:

{cig�cj, ci, cj ∈ C} = {
cmg−1

� cn, cm, cn ∈ C
}
. (14)

Hence,

I αβ

l (�) = K�

π
Wl(�θ�)

::
T

∗αβ

l (g�). (15)

We further obtain

F�a−�b−�c

= K�a K�b K�c N�a−�b−�c

×
∞∑

l=0

Wl(�θ�a)Wl(�θ�b)Wl(�θ�c)

(2l + 1)2π3

×
M(l)∑

α,β,γ=1

::
T

αβ

l (g�a)
::
T

γα

l (g�b)
::
T

βγ

l (g�c). (16)

The following relation is valid

M(l)∑

α,β,γ=1

::
T

αβ

l (g�a)
::
T

γα

l (g�b)
::
T

βγ

l (g�c)

= 1

N 3
c

Nc∑

i, j,k=1

χl(�(ci g�ac j g�bck g�c)), (17)
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where Nc is the order of the subgroup C , i.e. Nc =
24 for the cubic symmetry, and χl(ω) are the trace—or
character—of the representation of the rotation group.
They take on the explicit form

χl(ω) = sin[(2l + 1)ω/2]/sin(ω/2). (18)

Thus, (15) can also be written as

F�a−�b−�c = K�a K�b K�c N�a−�b−�c

π3 N 3
c

×
∞∑

l=0

Wl(�θ�a)Wl(�θ�b)Wl(�θ�c)

(2l + 1)2

×
NC∑

α,β,γ=1

χl(�(cig�acjg�bckg�c)).

(19)

The expressions (19) or (16)—or the more general ex-
pression (13)—provide an analytical solution for (6).
For practical calculation, the series expansion has to
be truncated at a finite rank lmax, which, in turn, de-
termines the accuracy. The terms of type Wl(�θ�a) in
(19) decrease very rapidly as l increases. This suggests
that a high numerical accuracy may be obtained at a
relatively low lmax value.

As a special case, we consider the frequency of
�1-�1-�1 triple junctions. This type of junctions is
of particular interest because it always builds an I-
line displaying special properties [16, 17]. Substituting
g�a = g�b = g�c = I, N�a−�b−�c = 1 and K�1 = 24 in
(19), we obtain

F�1−�1−�1 = 243

π3

∞∑

l=0

M(l)

(2l + 1)2
[Wl(δ)]3 (20)

with

M(l) = 1

24

NC∑

i=1

χl(�(ci)), δ = �θ�1 = 15◦. (21)

T ABL E I Frequencies of occurrence of various CSL triple junctions in randomly oriented cubic crystals, as calculated following the harmonic
expansion method (Equation 13)

Frequency % according to Frequency % according to Frequency % according to Frequency % theoretical value,
Type Palumbo & Aust’s criterion Brandon’s criterion Fortier et al. [19] derived directly from (22)

�1-�1-�1 0.024366 0.024366 0.04 0.024356
�1-�3-�3 0.002567 0.022606 0.015
�1-�5-�5 0.000397 0.009691
�1-�7-�7 0.000086 0.003632
�1-�9-�9 0.000040 0.002583
�1-�27a-�27a 0.000000 0.000111
�1-�27b-�27b 0.000000 0.000222
�3-�3-�9 0.000360 0.009143 0.005
�3-�9-�27a 0.000006 0.001249
�3-�9-�27b 0.000012 0.002270

3. Results and discussion
Table I shows the fractions of CSL triple-junction dis-
tributions in randomly oriented materials for some CSL
triple junctions obtained according to (13) in which the
series expansion was truncated at l = 44.

An explicit expression for the F�1−�1−�1 has
also been found by straightforward—though rather
tedious—fully analytical calculation, as an alternative
to the series expansion. This method implies that the
region and limits of the integration involved in (6) are
taken into account. Detailed proof of this is provided in
Appendix 1. We are content with giving here only the
final form:

F�1−�1−�1 = 144

π2

(
14 + 3δ2 + 18 cos δ

− 6δ sin δ − 32 cos3 δ

2

)
. (22)

It can be observed that the value for �1-�1-�1
triple junctions obtained by using the harmonic ex-
pansion approximation fits well with the theoreti-
cal fraction (0.024356%) directly derived from the
analytical exact expression (22). This suggests that
the truncation error is negligible in the procedure
concerned.

Fortier et al. [18] have evaluated the CSL triple junc-
tion distributions in randomly oriented and in fiber-
textured materials by computer simulation. As reported,
the fractions of �1-�1-�1, �1-�3-�3 and �3-�3-
�9 triple junctions in a randomly oriented distribu-
tion were about 0.04%, 0.015% and 0.005%, respec-
tively. The discrepancy with the present values may
probably be related to an insufficient sampling in their
calculations.

It was shown in Table II that, when using extended
sampling applying a variant of the Monte-Carlo sim-
ulation method designed to exclude any rejection, we
can achieve a degree of accuracy comparable to that of
the series expansion approach. But Monte-Carlo meth-
ods generally impose a much longer computation time,
which—in certain cases—nearly invalidates the pro-
cedure. Thus, the series expansion method appears as
more powerful for the type of study reported in this
paper.
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T ABL E I I Frequencies of occurrence of various CSL triple junctions
in randomly oriented cubic crystals calculated with the Monte-Carlo
method

Frequency % Frequency %
according to Palumbo according to

Type and Aust’s criterion Brandon’s criterion

�1-�1-�1 0.024110 0.023050
�1-�3-�3 0.002800 0.021610
�1-�5-�5 0.000360 0.008790
�1-�7-�7 0.000080 0.003490
�1-�9-�9 0.000030 0.002550
�1-�27a-�27a 0.000000 0.000100
�1-�27b-�27b 0.000000 0.000220
�3-�3-�9 0.000430 0.008170
�3-�9-�27a 0.000000 0.000890
�3-�9-�27b 0.000010 0.002230

Except for the �1-�1-�1 frequency, with the
maximum allowable angular deviations �θ� de-
termined according to respectively Brandon’s cri-
terion and Palumbo and Aust’s criterion, the re-
sults are quite different. Indeed, the more selective
Palumbo and Aust’s �θ� criterion yields—with the
exception of the �1-�1-�1 triple line—noticeably
smaller CSL triple line frequencies than the Brandon’s
criterion.

We should bear in mind that the series expansion
method has also been applied successfully to the study
of the influence of the crystallographic texture on the
CSL triple junction distributions in both peak-type and
fiber-type ({001}, {110}, {111}) textured materials [19],
where the basic assumption was made that there was
no orientation correlation in adjacent grains. As was
shown in this paper, the fractions of �1-�1-�1 triple
junctions increase monotonously with the increasing
texture sharpness.

4. Concluding remarks
The basic purpose of this study is to present a theoret-
ical approach to the CSL triple junction distribution in
a randomly oriented polycrystal. The use of harmonic
expansion yields a mathematically convenient formula-
tion, enabling to calculate the frequencies of CSL triple
junctions with adequate accuracy. The results obtained
are expected to become a useful reference to various
measured distributions. Furthermore, the present math-
ematical treatment may be extended to the more general
case of textured polycrystals.
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Appendix 1
An explicit expression for the F�1−�1−�1 can be de-
rived by a straightforward but tedious examination of
the region and limits of the integration involved in (6).

From (6), we obtain

F�1−�1−�1 =
∫∫

τ

dg1dg2 τ :

g1 ∈ �a
g2 ∈ �b
g2g1 ∈ �c
g′

1 = g1ci

g′
2 = c j g2

=
Nc∑

i=1

Nc∑

j=1

Nc∑

k=1

∫∫

�(g1ci )≤δ

�(g2c j )≤δ

�(g3ck )≤δ

dg1dg2

=
Nc∑

i,j=1

Nc∑

m=1

∫∫

�(g′
1)≤δ

�(g′
2)≤δ

�(g′
2g′

1cm)≤δ

dg′
1dg′

2

=
Nc∑

m=1

N 2
c

∫∫

�(g1)≤δ

�(g2)≤δ

�(g2g1cm)≤δ

dg1dg2

(A1)

We define a characteristic function

fδ(g) =
{

1
0

�(g) ≤ δ

�(g) > δ
, (A2)

Then,

Nc∑

k=1

N 2
c

∫∫

�(g1)≤δ

�(g2)≤δ

�(g2g1cm)≤δ

dg1dg2

=
∫∫

�(g2g1cm)≤δ

fδ(g1) fδ(g2) dg1dg2 (A3)

=
∫

|gcm|≤δ

h(g) dg g = g2g1

h(g) =
∮

SO(3)
fδ(g1) fδ(gg−1

1
) dg1 (A4)

As proven in [20], the orthogonal rotation matrix can
be written as:

g1 = eω1�n1

g = eω�n. (A5)

h(g) = 2

π

∫ π

0
sin2 ω1

2

×
[∮

S2

fδ
(
eω1

⇀
n 1

)
fδ

(
eω

⇀
n e−ω1

⇀
n 1

)
d

⇀

n1

]

dω1

(A6)

We define

eω
⇀
n · e−ω1

⇀
n 1 = eω̂

⇀

n̂ . (A7)
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As the characteristic function depends only of the angle
and not of the axis of the rotation, fδ(eω1

⇀
n 1 ) = fδ(eω1

⇀

k 1 ),

with
⇀

k1 being fixed, we get

h(g) = 2

π

∫ π

0
fδ

(
eω1

⇀

k 1
)

× sin2 ω1

2

[∮

S2

fδ
(
eω̂

⇀

n̂ )
d

⇀

n1

]

dω1. (A8)

where
∮

S2

fδ
(
eω̂

⇀

n̂ )
d

⇀

n1

= 1

4π
h(g)

∫ π

0
sin θdθ

∫ 2π

0
fδ

(
eω̂

⇀

k̂ )
dϕ

= 1

2

∫ π

0
fδ

(
eω̂

⇀

k̂ )
sin θdθ

= 1

2

∫ ω+ω1

|ω−ω1|
fδ

(
eω̂

⇀

k̂ ) sin ω̂
2 dω̂

2 sin ω
2 sin ω1

2

= 1

4 sin ω
2 sin ω1

2

∫ ω+ω1

|ω−ω1|
fδ

(
eω̂

⇀

k̂ )
sin

ω̂

2
dω̂

(A9)

When δ is small enough, there is no risk of overlapping
of the equivalent regions in the Euler space, so that

Nc∑

k=1

∫

|gcm|≤δ

h(g) dg =
∫

|g|≤δ

h(g) dg (A10)

So we obtain according to a tricky subdivision of the
integration domain of the double integral

F�1−�1−�1

= N 2
c

∫

|g|≤δ

h(g) dg

= N 2
c

π2

∫ δ

0
sin

ω

2
dω

∫ π

0
sin

ω

2
dω

= N 2
c

π2

∫ δ

0
sin

ω

2
dω

{ ∫ δ−ω

0
sin

ω1

2
dω1

×
∫ ω+ω1

|ω−ω1|
sin

ω̂

2
dω̂ +

∫ δ

δ−ω

sin
ω1

2
dω1

×
∫ δ

|ω−ω1|
sin

ω̂

2
dω̂

}

= N 2
c

π2

(
3

4
δ2 − 1 + 9 cos2 δ

2
− 8 cos3 δ

2
− 3

2
δ sin δ

)

= 144

π2

(
14 + 3δ2 + 18 cos δ

− 6δ sin δ − 32 cos3 δ

2

)
.
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